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LETTER TO THE EDITOR 

Variational renormalisation-group approach to the q- state 
Potts model in two dimensions 

B Nienhuis, E K Riedel and M Schick 
Department of Physics, University of Washington, Seattle, WA 98195, USA 

Received 22 October 1979 

Abstract. The two-dimensional q-state Potts model is investigated by means of a Kadanoff 
lower-bound renormalisation-group transformation that utilises a recent suggestion to 
identify disordered cells with vacancies. The topology of the phase diagram is obtained, 
including first- and second-order transitions for q > qc and q < qc, respectively, as well as 
accurate results for critical and tricritical exponents and the critical value qc. 

Recently, Nienhuis et a1 (1979) presented the first renormalisation-group calculation 
for the two-dimensional q-state Potts model that yielded, with increasing q, the 
changeover in the phase transition from second to first order that this model is known to 
possess (Baxter 1973). The calculation employed a generalised Niemeijer-van 
Leeuwen (1976) transformation. The results were not completely satisfactory in that 
they depended on the choice of parameters in the weight function for which there was 
little guidance ab initio. The purpose of this Letter is to report work using Kadanoff’s 
lower-bound renormalisation-group method, in which a variational principle is used to 
determine an optimal weight function depending on three variational parameters. First, 
the calculation reproduces the topology of the renormalisation-group phase diagram of 
the Potts model obtained earlier. Second, the calculations yield, for the critical value of 
q, qc = 4.08 in excellent agreement with Baxter’s result qc = 4. Third, the approach 
yields results for critical and tricritical exponents that provide strong support for a 
recent conjecture that relates the thermal exponents of the Potts and eight-vertex 
models. 

The new concept introduced into the renormalisation-group treatment of the Potts 
model by Nienhuis et a1 (1979) is to allow the Potts model to develop vacancies as it is 
renormalised. In contrast to a majority rule mapping, disordered configurations of 
spins are assigned to the empty state or vacancy. This necessitates enlarging the space 
of Hamiltonians to that of the Potts lattice gas (PLG). The nearest-neighbour Hamil- 
tonian is 

where the first summation is over all nearest-neighbour pairs on a lattice. The 
lattice-gas variable ti assumes the value one if there is a Potts spin si = 1,2,  . . . , q at 
lattice site i and zero otherwise. The couplings K and J denote lattice gas and Potts 
interaction parameters, and the chemical potential A governs the concentration of 
vacancies. The pure Potts model is recovered for A = - CO or, equivalently, K = 00. The 
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Hamiltonian describes for q = 1 the Ising lattice-gas and for q = 2 the Blume-Emery- 
Griffiths model. 

The Kadanoff renormalisation-group transformation applied here is a straightfor- 
ward generalisation of that described by Kadanoff (1975) and others (Burkhardt 1976, 
Dasgupta 1977). We consider a square lattice and a PLG Hamiltonian that can be 
written as a sum over elementary squares, -@Z = C Hsa. We assume Hsa to be 
invariant under interchange of any two sites on the square because the nearest- 
neighbour Potts Hamiltonian can be mapped onto this subspace by an exact decimation 
transformation (Kadanoff and Houghton 1975). This subspace involves twelve coup- 
ling constants K associated with the twelve possible spin configurations of a square. We 
use the weight function employed by Burkhardt (1976) for the Blume-Emery-Griffiths 
model. It maps a configuration {ti, si} of a square to t’, s ’  with weight 

where pl, p2 ,  p 3  are variational parameters and N({ti, si})  is a normalisation factor such 
that Xtf,,W = 1. As usual the Kadanoff approximation provides a lower bound to the 
free energy. The variational parameters employed to maximise this lower bound are 
determined at the fixed points of the recursion relations by applying the criterion that 
the free energy be stationary with respect to variation of the pi (Kadanoff eta1 1976). By 
investigating the behaviour of the free energy in the vicinity of each fixed point, we 
eliminate the solutions that correspond to minima or saddle points. 

The calculation reproduces the topology of the renormalisation-group flow 
obtained by Nienhuis et al (1979) for the q-state Potts model and, in addition, it yields 
very accurate results for critical and tricritical exponents as well as the critical value qc. 
For 4 < qc, the recursion relations exhibit critical, tricritical and discontinuity fixed 
points. The critical fixed point attracts renormalisation-group flows commencing at the 
critical temperature of the pure Potts model. As q is increased, the critical and tricritical 
fixed points approach each other and annihilate at a critical value qc. For q > qc, only 
the discontinuity fixed point associated with a first-order transition (Nienhuis and 
Nauenberg 1975) remains. Therefore, the phase transition of the two-dimensional 
Potts model is continuous when q 6 qc and first-order when q > qc. The approximate 
recursion relations yield qc = 4.08 in excellent agreement with the analytical result 
qc = 4 of Baxter (1973). 

The values of the three variational parameters p 1 , p 2 , p 3  at q = 2  are 
(-3*056,5.966, -1,395) and (-1.146, 2.190, -0.217) for the critical and tricritical 
fixed points respectively, and for the discontinuity fixed point they approach infinity, 
approximately in the direction (3,1, -2). These fixed points agree with those found by 
Burkhardt (1976) for the Blume-Emery-Griffiths model. We have verified that the 
free energy, as a function of pl, p 2 ,  p 3 ,  is a maximum at these three fixed points. The 
equations have an additional fixed-point solution in the pure Potts model subspace (pl 
and p 3  are infinite such that vacancies are excluded). That solution is identical to the 
one found by Dasgupta (1977), who did not consider the possibility of vacancies. It 
yields the erroneous result of a continuous phase transition for all q. Though this fixed 
point corresponds to a maximum of the free energy for variation of the parameter p 2  
alone, in the larger parameter space pl,  p2, p3 it corresponds to a saddle point. 

In figure 1, results for the critical and tricritical thermal exponent y = Y-’, as a 
function of q, are summarised and compared with a recent conjecture (den Nijs 1979, 
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Nienhuis et a1 1979) that establishes a relation between the exponents of the Potts and 
eight-vertex (Baxter 1972) models, 

( y  -3)(y8'-2)=3. (3) 

Figure 1. Critical and tricritical exponents (lower and upper branch, respectively) from the 
Kadanoff lower-bound approximation (solid curve) and the conjecture of den Nijs and 
Nienhuis et nl. 

Here ysv = (2/.rr) c0s-l (J4/2) with 0 s y 8 ' s  1 along the critical branch and -1 G y 8 ' S  
0 along the tricritical branch of the curve. The numerical and conjectured data agree to 
within 0.2% for the tricritical and 3% for the critical exponents, with a larger deviation 
at the tip of the curve where the slope is infinite. Results for the tricritical exponents 
have been obtained independently by Burkhardt (1979, private communication). This 
excellent agreement provides strong support for the conjecture of equation (3). The 
results for the exponents reported here were calculated following the usual prescription 
of evaluating the derivative matrix of the interaction parameters K while keeping the 
variational parameters p constant (Kadanoff 1975, Kadanoff et ai 1976). Although not 
in the full spirit of a variational calculation (Barber 1977, den Nijs and Knops 1978, van 
Saarloos et a1 1978), this procedure yields exponents with a surprising accuracy for a 
number of systems. The calculation determines the spectrum of exponents for the space 
of twelve coupling constants. For the king case, q = 2, we note that the leading (even) 
critical exponents 0.97, -0.94, -1.91, -2.93, , . . are close to the set of integers 1, -1, 
-2, -3, . . . . The correction exponent -1 has recently been determined by Hamer et a1 
(1979). The analysis of the transformation for those q not shown in figure 1 is less direct 
and will be reported elsewhere. 

In summary, our variational calculation for the Potts model supports the basic idea 
of mapping disordered groups of spins to vacancies, confirms the renormalisation group 
topology reported previously, and strengthens the belief that the exponents of the Potts 
model are now known exactly. 

This research was supported in part by the US National Science Foundation under 
Grants No. DMR 77-12676 A01 and No. DMR 77-21842. 
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